DCVax-Direct
Dendritic Cell Therapy for Solid Tumors

SMI Cancer Vaccines Conference
September 21, 2016

Marnix L. Bosch, MBA, PhD
Chief Technical Officer
Northwest Biotherapeutics
Disclaimer

Certain statements made in this presentation are “forward-looking statements” of NW Bio as defined by the Securities and Exchange Commission (“SEC”). All statements, other than statements of historical fact, included in this presentation that address activities, events or developments that NW Bio believes or anticipates will or may occur in the future are forward-looking statements. These statements are based on certain assumptions made based on experience, expected future developments and other factors NW Bio believes are appropriate in the circumstances. Such statements are subject to a number of assumptions, risks and uncertainties, many of which are beyond the control of NW Bio. Investors and others are cautioned that any such statements are not guarantees of future performance. These forward-looking statements could cause actual results and developments to differ materially from those expressed or implied in such statements, including our ability to raise funds for general corporate purposes and operations, including our clinical trials, the commercial feasibility and success of our technology, our ability to recruit qualified management and technical personnel, our ability to scale up the manufacturing of our product candidates for commercialization, the success of our clinical trials and our ability to obtain and maintain required regulatory approvals for our products. Furthermore, NW Bio does not intend (and is not obligated) to update publicly any forward-looking statements. The contents of this presentation should be considered in conjunction with the risk factors contained in NW Bio’s recent filings with the SEC, including its most recent Form 10K. This communication is neither an offer to sell nor a solicitation of an offer to buy any securities mentioned herein. This publication is confidential for the information of the addressee only and may not be reproduced in whole or in part; copies circulated, or disclosed to another party, without the prior written consent of Northwest Biotherapeutics (NW Bio) are strictly prohibited.
Scientific Background: DC and cancer

- Dendritic Cells (DC) are professional antigen-presenting cells which are required for inducing any adaptive immune response.
- In cancer subjects, factors produced by the tumor block functional maturation of DC.
- The tumor microenvironment is highly immuno-suppressive, and hampers induction of de novo immune responses as well as the function of effector cells.
- Thus, to generate an effective immune response in cancer subjects, DC must be generated ex vivo and the tumor microenvironment must be modified.
Scientific Background: DC Maturation

- Immature DC take up and process antigen
- Mature DC present antigen and activate the immune system, mainly through interaction with T cells
- DC maturation, i.e. the transition from immature to mature DC, is a time-dependent process that takes 48 – 72 hours
- Activated, or partially matured, DC have been exposed to maturation agents, and have been arrested in the maturation process by cryopreservation
- If done correctly, the DC will continue the maturation process after thawing
Scientific Background: Activated DC

- Activated DC:
 - Still pick up and process antigen (especially dead and dying tumor cells)
 - Continue the maturation process upon thawing as the required signal transduction pathways have been activated
 - Are less susceptible to the suppressive effects of the tumor microenvironment
 - Produce high amounts of cytokines to modulate tumor-based immunosuppression

Hypothesis: Activated DC will be more efficacious than immature DC or than fully mature DC
Scientific Background: Animal Data

• Experiment: CT26 colon carcinoma cells are implanted in the right and (3 days later) the left flanks of BALB/c mice
• After 15 days, the animals are given a low dose of intraperitoneal cyclophosphamide
• Next, either immature or activated DC are injected into the right-flank tumor only
• Tumor growth on both sides is followed over time
• Animals that clear their tumors are re-challenged 60 days later with 10-fold higher tumor cell dose
DCVax-Direct: Pre-Clinical Results

Tumor clearance on same side of body after direct injection in animal studies
Tumor clearance on opposite side of body after direct injection in animal studies

- Chemo only
- + partially activated DCs
- + immature DCs
- + optimally partially activated DCs
Preclinical Data: Conclusions

• Optimally activated DC are meaningfully more effective in clearing established tumors than immature DC
• The activation conditions are essential for maximum efficacy
• Clearance of non-injected tumors demonstrates effective systemic anti-tumor immunity
• Animals that have cleared their tumors demonstrate long-term protection from re-challenge
DCVax-Direct Phase I Trial

• DCVax-Direct: autologous, activated dendritic cells (DC) for intratumoral injection

• Indication: potentially applicable for any non-resectable (or partially resected) solid tumor, including
 – Lung cancer
 – Pancreatic cancer
 – Soft tissue sarcoma
 – Melanoma
 – Ovarian cancer
 – Etc., etc., etc.

• Manufactured at low cost in our proprietary system

• System designed to deliver maximum efficacy
Manufacturing system for DCVax-Direct
DCVax Direct: Potential Clinical Effects

<table>
<thead>
<tr>
<th>Possible Clinical Effects</th>
<th>Causes</th>
<th>Seen in Pre-Clinical Studies?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local effects in tumors injected with DCVax-Direct</td>
<td>Tumor necrosis (tumor cell death)</td>
<td>Secretion of cytokines (e.g., TNFα, IL-6, IL-8) by activated DCs</td>
</tr>
<tr>
<td>Systemic effects in tumors not injected</td>
<td>Tumor shrinkage or elimination</td>
<td>Immune system activation</td>
</tr>
<tr>
<td>Immune memory</td>
<td>Lack of recurrence even when re-challenged</td>
<td>Immune system activation</td>
</tr>
</tbody>
</table>
DCVax-Direct Phase I Trial: Factors Evaluated

Trial is very information-rich, helping to accelerate development

• More than 10 different cancers were treated
 • DCVax-Direct can in theory be applied to any solid tumor
• 3 dose levels: 2M, 6M and 15M cells
• Feasibility assessments of dose and product administration
 • Including choice of optimal image guidance, e.g. CT vs. US
• Both imaging and biopsies used to monitor responses, correlate with clinical outcomes and evaluate treatment schedule
• Both local and systemic immune responses evaluated
• Potential endpoints evaluated, including tumor response and clinical benefit rate
• Safety
Patient Characteristics

<table>
<thead>
<tr>
<th>Characteristics, n=39</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years, median (range)</td>
<td>53 (30-73)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>18 (46.2)</td>
</tr>
<tr>
<td>Female</td>
<td>21 (53.8)</td>
</tr>
<tr>
<td>Disease type, n (%)</td>
<td></td>
</tr>
<tr>
<td>Pancreatic adenocancer + NET</td>
<td>7 (17.9)</td>
</tr>
<tr>
<td>Sarcoma</td>
<td>8 (20.5)</td>
</tr>
<tr>
<td>Desmoplastic tumor</td>
<td>1 (2.6)</td>
</tr>
<tr>
<td>Colorectal</td>
<td>7 (17.9)</td>
</tr>
<tr>
<td>Neuroendocrine</td>
<td>1 (2.6)</td>
</tr>
<tr>
<td>Melanoma</td>
<td>6 (15.4)</td>
</tr>
<tr>
<td>Lung</td>
<td>4 (10.2)</td>
</tr>
<tr>
<td>Breast</td>
<td>2 (5.1)</td>
</tr>
<tr>
<td>Ovarian</td>
<td>1 (2.6)</td>
</tr>
<tr>
<td>Bladder</td>
<td>1 (2.6)</td>
</tr>
<tr>
<td>Cholangiocarcinoma</td>
<td>1 (2.6)</td>
</tr>
<tr>
<td>No. of prior therapies in metastatic setting</td>
<td></td>
</tr>
<tr>
<td>≤2</td>
<td>20 (51.3)</td>
</tr>
<tr>
<td>3–5</td>
<td>12 (30.8)</td>
</tr>
<tr>
<td>≥6</td>
<td>7 (17.9)</td>
</tr>
</tbody>
</table>
Safety Findings

• In general, the treatment was well tolerated

• No dose limiting toxicities were observed at either 2 million, 6 million or 15 million DCs per injection

• Most patients reported only mild adverse events, consisting mostly of flu-like symptoms
 – Low grade fevers (80%)
 – Chills (41%)
 – Fatigue (30%)
 – Injection site pain or discomfort (28%)
 – Night sweats (26%)
 – Decreased appetite (23%)
 – Myalgia (18%)

• There were four grade 3 and one grade 4 adverse events
 – Grade 3: Fatigue, Anemia, Hypokalemia (all resolved)
 – Grade 4: Systemic inflammatory response syndrome (resolved)
Tumor infiltrating T cells (TILs)

TILs, including both CD4+ helper cells and CD8+ killer cells increased from baseline in 15 of 27 (55%) of assessed patients.

TILs sharing sequences with peripheral T cells also increased, indicating a systemic response.

Example:
clear cell sarcoma

Day 0

Day 7

CD3

CD4

CD8
Imaging challenges

- Tumors can appear larger due to infiltration of inflammatory cells and/or immune cells
- Tumors can appear larger due to accumulation of fluids
- Tumors can appear to maintain size, despite extensive necrosis
T cell Infiltration can be Associated with Apparent PD

- Clear cell sarcoma
- Patient failed multiple other treatments
- 5 measurable tumors

Substantial T-cell infiltration (week 8):

CD3 cells

CD4 cells

CD8 cells
Induction of Immune Checkpoint expression

• Expression of immune checkpoint molecules in tumor tissue modulates anti-tumor immune responses
• Checkpoint inhibitors (CIs) incur their effects through ‘unblocking’ of an existing anti-tumor immune response, but are likely to be ineffective absent an effective pre-existing response
• In the DCVax-Direct Phase I trial cohort, 14 of 22 evaluable patients (64%) showed either de novo or significantly increased expression of the PDL-1 checkpoint molecule following DCVax-Direct treatment – these patients may become subsequent candidates for CI treatment

De novo PDL-1 staining on sarcoma tissue, 8 weeks after initiation of DCVax-Direct treatment
Survival: Actual vs. Expected*

Average life expectancy of top 30% combined: 12.3 months*
Average survival to date of top 30% combined: 26.7 months

Dendritic Cell Characteristics

- Phenotypic/Cell Surface Characteristics
Correlations Between DC Phenotype and Survival

These relationships between phenotypic markers on the DC and survival, albeit largely non-significant, suggest that DC quality may play a role in determining clinical outcome.
Dendritic Cell Characteristics
Soluble Factors Production

- The supernatant from the DC activation stage is harvested and evaluated for the presence of cytokines and chemokines.
- The observed chemokine/cytokine profile is commensurate with the DC1 phenotype.
- Cytokine/chemokine production is re-triggered by interactions with tumor cells and T cells.
Cytokine Production: Identification of Outliers

• Analyzing cytokine production and survival shows that the vast majority of patients show a tight cluster despite the large patient to patient variation in this trial (e.g. with respect to cancer type, age, prior treatments etc)

• We identified 3 outliers, suggesting that the DC of a small minority of patients may respond differently

• These outliers are excluded from subsequent correlative analyses between cytokine production and survival or other disease characteristics
Correlations Between Cytokine Production and Survival

IL-8 vs. Survival

- Percent survival
- Months
- $p < 0.05$

TNFα vs. Survival

- Percent survival
- Months
- $p < 0.05$

IL-12 p40 vs. Survival

- Percent survival
- Months
- $p < 0.05$

* >median

* <median
Associations Between Cytokines and Survival

- The noted associations between cytokine production and survival may be either direct, or they can be a reflection of overall DC quality or potency, or both.

- Interleukin 8 is a pleiotropic chemokine, which can act as a chemotactic factor for leukocytes, and this function may aid in enhancing anti-tumor immune responses.

- Tumor necrosis factor alpha (TNFα) has both direct tumor cell killing effects, and also acts as a Th1 cytokine, promoting anti-tumor immune responses.

- IL-12 p40 is one of the 2 components of IL-12 p70, which is a potent Th1 cytokine.
 - At the time of harvest, the DC do not yet produce large amounts of p70 and correlations with p70 production are therefore difficult to assess.
Stable Disease/Tumor Control

- Stable Disease (SD) at week 8 was used as a measure of tumor control.
- 23 of 37 (62%) of evaluable patients achieved SD at week 8
- SD at wk8 is predictive of longer survival

![Survival curves for all patients and outliers removed](image)

- *p < 0.01*
Tumor Control vs. Cytokines

• Cytokine production, esp. TNFα, is correlated with tumor control

This correlation, if indicative of a causal relationship, could represent a direct effect of the DC on the tumor following injection, could reflect TNFα’s function as a TH1 cytokine, or both
Conclusions

• Activated DC can be safely administered into the tumor, in patients with unresectable cancers

• Early T cell infiltration demonstrates modulation of the tumor microenvironment by the injected DC to allow influx of pre-existing anti-tumor T cells

• Later emerging T cell infiltration, coupled with the emergence of shared TCR sequences between tumor and blood, demonstrates induction of a systemic anti-tumor immune response

• Functional staining of infiltrating T cells for interferon gamma reveals cytokine production by these cells, which is indicative of cytotoxic T cell activity

• Induction of PD-L1 in tumor tissue in response to DCVax-Direct indicates the potential for combination therapy with immune checkpoint inhibitors
Conclusions (cont.)

• A meaningful proportion of patients show long term survival, e.g. >24 months

• DC quality, defined either phenotypically or by the production of soluble factors, is predictive for survival

• The noted correlations between cytokine/chemokine production and survival supports the hypothesized mechanisms of action of DCVax-Direct:
 – Direct killing of tumor cells
 – Changing the tumor micro-environment to become more conducive to immune activities
 – Inducing anti-tumor T cells to initiate tumor cell killing

• DC-produced cytokines such as TNFα may be directly responsible for mediating tumor control in patients treated with DCVax-Direct
Future Plans

Phase II trial design optimized for efficacy:
• Selected indications, as well as basket trial for ‘all comers’
 – e.g. NSCLC, Sarcoma
• More frequent immunizations, spaced closer together
• Multiple injections, into multiple tumors, at each visit
• Pre-condition patient’s immune system with low dose cyclophosphamide
• Allow approved immune checkpoint inhibitors
Acknowledgments

<table>
<thead>
<tr>
<th>MD Anderson Cancer Center</th>
<th>Northwest Biotherapeutics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Vivek Subbiah</td>
<td>Meghan Swardstrom</td>
</tr>
<tr>
<td>Dr. Ravi Murthy</td>
<td>Linda Powers</td>
</tr>
<tr>
<td>Dr. Robert Brown</td>
<td></td>
</tr>
<tr>
<td>Dr. Mary McGuire</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Orlando Health</th>
<th>Cognate Bioservices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Omar Kayaleh</td>
<td>Mike Stella</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UCLA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Robert Prins</td>
<td>Lori Noffsinger</td>
</tr>
<tr>
<td>Dr. Tina Chou</td>
<td>Kyle Hendricks</td>
</tr>
</tbody>
</table>

Northwest Biotherapeutics

Northwest Biotherapeutics

Cognate Bioservices

Cognate Bioservices